Extensions 1→N→G→Q→1 with N=C23×C4 and Q=D7

Direct product G=N×Q with N=C23×C4 and Q=D7
dρLabelID
D7×C23×C4224D7xC2^3xC4448,1366

Semidirect products G=N:Q with N=C23×C4 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C23×C4)⋊1D7 = C23.28D28φ: D7/C7C2 ⊆ Aut C23×C4224(C2^3xC4):1D7448,747
(C23×C4)⋊2D7 = C22×D14⋊C4φ: D7/C7C2 ⊆ Aut C23×C4224(C2^3xC4):2D7448,1240
(C23×C4)⋊3D7 = C2×C4×C7⋊D4φ: D7/C7C2 ⊆ Aut C23×C4224(C2^3xC4):3D7448,1241
(C23×C4)⋊4D7 = C2×C23.23D14φ: D7/C7C2 ⊆ Aut C23×C4224(C2^3xC4):4D7448,1242
(C23×C4)⋊5D7 = C2×C287D4φ: D7/C7C2 ⊆ Aut C23×C4224(C2^3xC4):5D7448,1243
(C23×C4)⋊6D7 = C24.72D14φ: D7/C7C2 ⊆ Aut C23×C4112(C2^3xC4):6D7448,1244
(C23×C4)⋊7D7 = C23×D28φ: D7/C7C2 ⊆ Aut C23×C4224(C2^3xC4):7D7448,1367
(C23×C4)⋊8D7 = C22×C4○D28φ: D7/C7C2 ⊆ Aut C23×C4224(C2^3xC4):8D7448,1368

Non-split extensions G=N.Q with N=C23×C4 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C23×C4).1D7 = C2×C28.55D4φ: D7/C7C2 ⊆ Aut C23×C4224(C2^3xC4).1D7448,740
(C23×C4).2D7 = C2×C14.C42φ: D7/C7C2 ⊆ Aut C23×C4448(C2^3xC4).2D7448,742
(C23×C4).3D7 = C4×C23.D7φ: D7/C7C2 ⊆ Aut C23×C4224(C2^3xC4).3D7448,743
(C23×C4).4D7 = C24.62D14φ: D7/C7C2 ⊆ Aut C23×C4224(C2^3xC4).4D7448,744
(C23×C4).5D7 = C24.63D14φ: D7/C7C2 ⊆ Aut C23×C4224(C2^3xC4).5D7448,745
(C23×C4).6D7 = C22×Dic7⋊C4φ: D7/C7C2 ⊆ Aut C23×C4448(C2^3xC4).6D7448,1236
(C23×C4).7D7 = C24.4Dic7φ: D7/C7C2 ⊆ Aut C23×C4112(C2^3xC4).7D7448,741
(C23×C4).8D7 = C23.27D28φ: D7/C7C2 ⊆ Aut C23×C4224(C2^3xC4).8D7448,746
(C23×C4).9D7 = C22×C4.Dic7φ: D7/C7C2 ⊆ Aut C23×C4224(C2^3xC4).9D7448,1234
(C23×C4).10D7 = C2×C28.48D4φ: D7/C7C2 ⊆ Aut C23×C4224(C2^3xC4).10D7448,1237
(C23×C4).11D7 = C22×C4⋊Dic7φ: D7/C7C2 ⊆ Aut C23×C4448(C2^3xC4).11D7448,1238
(C23×C4).12D7 = C2×C23.21D14φ: D7/C7C2 ⊆ Aut C23×C4224(C2^3xC4).12D7448,1239
(C23×C4).13D7 = C23×Dic14φ: D7/C7C2 ⊆ Aut C23×C4448(C2^3xC4).13D7448,1365
(C23×C4).14D7 = C23×C7⋊C8central extension (φ=1)448(C2^3xC4).14D7448,1233
(C23×C4).15D7 = C22×C4×Dic7central extension (φ=1)448(C2^3xC4).15D7448,1235

׿
×
𝔽